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What is Parallel cryptanalysis?

Use parallel cryptanalysis to solve mathematical 
problems which form the theoretical foundation of 
many public-key cryptographic schemes. 

Parallel cryptanalysis can be applied in many different settings
 Brute force
 Public-key / symmetric cryptography
 Computation of higher-order correlation power analysis 

attacks
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• DH

• ElGamal

• DSA

In this talk
Elliptic curve 
DLP

• ECDH(E)

• ECDSA
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• Lattice-based
R-LWE, NTRU

• Hash-based
Merkle trees

• Code-based
McEliece

Most common problems used to base public-key cryptography systems on

Outline



1. Show the best methods to cryptanalyze public-key cryptography
a) Explain some of the details

b) Effort estimates (security assessment)

2. From a computational and parallel point of view

3. Public-key cryptography is fun!

Goals
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Tiny keys

Fast crypto

No security

Huge keys

Slow crypto

Too much 
(?) security

Security
assessment

Finding the “optimal” key size is difficult

Does it make sense to say the best attack?
Fastest (time)
Minimize power consumption (green)
Minimize investment (re-use existing hardware)
Et cetera (invent your own characterization for best)

This presentation: Minimize wall-clock time using commonly available compute power

Approach: Use the best parallelizable algorithms



Integer Factorization

Many generic integer factoring algorithms follow the same old approach.

Idea: an odd integer 𝑛 can be written as the difference of two squares

For instance, idea behind 

• Fermat factorization method

• Quadratic sieve (and variants) 

• Number field sieve

Given a composite odd 𝑛 ∈ ℤ, find non-trivial factors 𝑝 and 𝑞 such that 𝑝 ∙ 𝑞 = 𝑛 (𝑞 > 𝑝).
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Integer Factorization

Many generic integer factoring algorithms follow the same old approach.

Idea: an odd integer 𝑛 can be written as the difference of two squares

For instance, idea behind 

• Fermat factorization method

• Quadratic sieve (and variants) 

• Number field sieve

Given a composite odd 𝑛 ∈ ℤ, find non-trivial factors 𝑝 and 𝑞 such that 𝑝 ∙ 𝑞 = 𝑛 (𝑞 > 𝑝).

Since 𝑝 and 𝑞 are odd the 
average 𝑝+𝑞

2
is an integer and  

𝑞−𝑝

2
is the distance from this 

average to 𝑝 (or 𝑞)



Integer Factorization: Fermat factorization method

Good at finding large divisors

Given 𝑛, try to find 𝑥 and 𝑦 such that 𝑥2 − 𝑛 = 𝑦2, start with 𝑛

Example. 
2279 = 43 × 53

2279 = 48

482 − 2279 = 25 = 52

48 + 5 48 − 5 = 43 × 53 = 2279



Integer Factorization: Fermat factorization method

Good at finding large divisors

Given 𝑛, try to find 𝑥 and 𝑦 such that 𝑥2 − 𝑛 = 𝑦2, start with 𝑛

Example. 
2279 = 43 × 53

2279 = 48

482 − 2279 = 25 = 52

48 + 5 48 − 5 = 43 × 53 = 2279

Generalization
Find 𝑥 and 𝑦 such that

𝑥2 ≡ 𝑦2 (mod 𝑛) and 𝑥 ≢ 𝑦 (mod 𝑛)
then with high probability

gcd 𝑥 − 𝑦, 𝑛 ≠ 1 or 𝑛



Integer Factorization

1. Polynomial selection

Degree 𝑑 > 1, integer 𝑚 ≈ 𝑛1/𝑑, radix-𝑚 representation of 𝑛 = 𝑓𝑑𝑚
𝑑 + ⋯+ 𝑓1𝑚 + 𝑓0

Leads to 𝑓𝑎 𝑋 =  𝑖=1
𝑑 𝑓𝑖𝑋

𝑖 ∈ ℤ[𝑋] with𝑓𝑎 𝑚 ≡ 0 mod 𝑛 (one can do better!) and 𝑓𝑟 𝑋 = 𝑋 − 𝑚

2. Relation collection
Find co-prime 𝑎, 𝑏 ∈ ℤ × ℤ≥0 such that 𝑏𝑓𝑟 𝑎/𝑏 and 𝑏𝑑𝑓𝑎(𝑎/𝑏) factors into small primes (“smooth”)

3. Matrix step
Find even sum of small prime exponent vectors, solve linear dependencies between the relations
(find random elements of the null-space of the matrix)

4. Square root
Compute the square root of a large element of the number field
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2. Relation collection
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1500 CPU years, easy to run in parallel

3. Matrix step
Find even sum of small prime exponent vectors, solve linear dependencies between the relations
(find random elements of the null-space of the matrix)
152 CPU years, not easy to run in parallel

4. Square root
Compute the square root of a large element of the number field
< 1 CPU day

Thorsten Kleinjung et al.: Factorization of a 768-bit RSA modulus. CRYPTO 2010
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Relation Collection

Sieving identifies many pairs 𝑎𝑖 , 𝑏𝑖 such that 𝑏𝑓𝑟 𝑎/𝑏 and 𝑏𝑑𝑓𝑎(𝑎/𝑏) have many small factors
(memory intensive)

Cofactorization (to check: is 𝑏𝑓𝑟 𝑎/𝑏 𝑩𝒓-smooth and 𝑏𝑑𝑓𝑎(𝑎/𝑏) 𝑩𝒂-smooth)
1. Polynomial evaluation
2. Compositeness test (Miller-Rabin)
3. Trial division
4. Pollard 𝑝 − 1 (stage 1 & 2)
5. Elliptic curve factorization method (stage 1 & 2) using twisted Edwards curves
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1. Polynomial evaluation
2. Compositeness test (Miller-Rabin)
3. Trial division
4. Pollard 𝑝 − 1 (stage 1 & 2)
5. Elliptic curve factorization method (stage 1 & 2) using twisted Edwards curves

Modular arithmetic 
(Montgomery multiplication)
Exact division

Andrea Miele, Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra: Cofactorization on Graphics Processing Units.  CHES 2014

Cofactorization can check many pairs 
𝑎𝑖 , 𝑏𝑖 simultaneously. Can we offload this 

to another device?
Possible answer: Graphics processing unit



Graphics processing unit (Nvidia platform)

• Modern GPUs are massively parallel 32-bit many-core architectures

• One integer or floating point instruction/clock cycle per thread/core
• Usually run thousands of threads



NVIDIA FERMI
(GTX 500 family)

NVIDIA KEPLER 
(GTX 700 family)

Cores Up to 512 Up to 2880

SMs Up to 16 Up to 48

Freq Up to 1544 MHz Up to 980 MHz

DRAM Up to 3GB (192 GB/s) Up to 6 GB (336 GB/s)

Graphics processing unit (Nvidia platform)

• Modern GPUs are massively parallel 32-bit many-core architectures

• One integer or floating point instruction/clock cycle per thread/core
• Usually run thousands of threads



Relation Collection on GPUs

 GPUs have been considered as cryptanalytic coprocessors before (e.g., for ECM)
 First time for the entire relation collection phase

Transfer batch of 𝑎𝑖 , 𝑏𝑖 from CPU to GPU
Repeat in parallel until all 𝑎𝑖 , 𝑏𝑖 have been processed {

Thread receives 𝑎𝑖 , 𝑏𝑖

Polynomial evaluation + Trial Division
Perform compositeness test and put results in correct bucket
Pick composite from bucket and perform dedicated Pollard 𝑝 − 1
Perform compositeness test and put results in correct bucket
for (𝑖 = 0; 𝑖 < 𝑛; 𝑖 + +) {

Pick composite from bucket and perform dedicated ECM
Perform compositeness test and put results in correct bucket

}
}
Transfer good pair to CPU, throw away the rest



Relation Collection on GPUs

 GPUs have been considered as cryptanalytic coprocessors before (e.g., for ECM)
 First time for the entire relation collection phase

Transfer batch of 𝑎𝑖 , 𝑏𝑖 from CPU to GPU
Repeat in parallel until all 𝑎𝑖 , 𝑏𝑖 have been processed {

Thread receives 𝑎𝑖 , 𝑏𝑖

Polynomial evaluation + Trial Division
Perform compositeness test and put results in correct bucket
Pick composite from bucket and perform dedicated Pollard 𝑝 − 1
Perform compositeness test and put results in correct bucket
for (𝑖 = 0; 𝑖 < 𝑛; 𝑖 + +) {

Pick composite from bucket and perform dedicated ECM
Perform compositeness test and put results in correct bucket

}
}
Transfer good pair to CPU, throw away the rest

All the Pollard 𝑝 − 1 and ECM 
algorithms run concurrently 
→ must use the same parameters 
→ how to optimize?
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Explanation: All missed prime factors are found by the subsequent ECM attempts. 
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Observation: Varying the bounds of the Pollard 𝑝 − 1 factoring (within reasonable ranges) 

does not noticeably affect the yield

Explanation: All missed prime factors are found by the subsequent ECM attempts. 

However, early removal of small primes reduce the size of the composite 

→ reducing the ECM run time 

→ reduces the overall run time

(if not too much time is spent on Pollard 𝑝 − 1)

The time difference for the entire 

cofactorization when the yield is fixed at 

95% when varying the 𝐵1 and 𝐵2

bounds for Pollard 𝑝 − 1 on the rational 

side

Parameter determination



CPU used: Intel i7-3770K CPU,             with 4 cores,                3.5 GHz with 16 GB of memory

GPU used: NVIDIA GeForce GTX 580, with 512 CUDA cores, 1.5 GHz with 1.5 GB of global memory

Large 
primes

Number of 
pairs after 
sieving

Setting Total 
seconds

Relations 
found

Relations 
per second

4 ≈ 5 ∙ 107
CPU only 1602 6855 4.28

GPU + CPU

Results

Target number: RSA-768 (same polynomial as used for the factorization)

Processing multiple special primes with desired yield 99%.
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CPU used: Intel i7-3770K CPU,             with 4 cores,                3.5 GHz with 16 GB of memory

GPU used: NVIDIA GeForce GTX 580, with 512 CUDA cores, 1.5 GHz with 1.5 GB of global memory

Large 
primes

Number of 
pairs after 
sieving

Setting Total 
seconds

Relations 
found

Relations 
per second

4 ≈ 5 ∙ 107
CPU only 1602 6855 4.28

GPU + CPU 1300 8302 6.39

Results

Target number: RSA-768 (same polynomial as used for the factorization)

Processing multiple special primes with desired yield 99%.

 Latency down by a factor 1.23
 Number of relations found up by 21.1%

 Yield / second up by a factor 1.49x

Not considered

 Purchase cost GPU versus CPU

 Power comparison GPU versus CPU



Pollard Rho

Given prime 𝑝 > 3, 𝐺 ∈ 𝐸 𝐅𝑝 of order 𝑛, 𝐻 ∈ 𝐺

find integer 𝑚 such that 𝑚𝐺 = 𝐻

• Originally an integer factorization method (1975)
• Three years later turned into approach for solving dlps [A]
• Perform a pseudo-random walk through the set of points

(length tail ≈ length cycle ≈  𝜋𝑛
4 [B,C])

[A] J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation, 1978

[B] B. Harris. Probability distributions related to random mappings. The Annals of Mathematical Statistics, 1960

[C] P. Flajolet and A. M. Odlyzko. Random mapping statistics. Eurocrypt 1989
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Given prime 𝑝 > 3, 𝐺 ∈ 𝐸 𝐅𝑝 of order 𝑛, 𝐻 ∈ 𝐺

find integer 𝑚 such that 𝑚𝐺 = 𝐻

• Originally an integer factorization method (1975)
• Three years later turned into approach for solving dlps [A]
• Perform a pseudo-random walk through the set of points

(length tail ≈ length cycle ≈  𝜋𝑛
4 [B,C])

𝒓-adding walk
o Define index function ℓ ∶ 𝐺 ↦ 0,… , 𝑟 − 1

o ℓ-induced 𝑟-partition 𝐺 =  𝑖=0
𝑟−1𝑔𝑖 where 𝑔𝑖 = 𝑥 ∶ 𝑥 ∈ 𝐺 , ℓ 𝑥 = 𝑖

(all of approximately the same cardinality)
o Select random multipliers 𝑢𝑖 and 𝑣𝑖 to define 𝑟 points 𝑓𝑖 = 𝑢𝑖𝐺 + 𝑣𝑖𝐻
o One step is defined as: 𝑃𝑖+1 = 𝑃𝑖 + 𝑓ℓ(𝑃𝑖)

[A] J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation, 1978

[B] B. Harris. Probability distributions related to random mappings. The Annals of Mathematical Statistics, 1960

[C] P. Flajolet and A. M. Odlyzko. Random mapping statistics. Eurocrypt 1989
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Parallelization of Pollard Rho

P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. Journal of Cryptology, 1999

Can we compute Pollard rho using multiple computational resources?

What happens if we run Pollard rho 𝑚 times in parallel?
→ 𝑚 speedup

Can we do better?

Let the 𝑚 parallel instance “work together”
→ share some points (distinguished points)
(Collected in a central database, collision search is performed here)
→ factor 𝑚 speedup
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Using Pollard Rho to solve ECDLPs

Advantages of Pollard rho
 Very low memory requirement (can run virtually on any device!)
 Can store a batch of distinguished points locally and sent them to the 

central database in batches.

What devices can we use to solve ECDLPs?
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 Very low memory requirement (can run virtually on any device!)
 Can store a batch of distinguished points locally and sent them to the 

central database in batches.

What devices can we use to solve ECDLPs?

• Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, Peter L. Montgomery: Solving a 112-bit Prime Elliptic Curve Discrete Logarithm 
Problem on Game Consoles using Sloppy Reduction. International Journal of Applied Cryptography, 2012

• Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W. Bos, Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier van Damme, Giacomo de 
Meulenaer, Luis Julian Dominguez Perez, Junfeng Fan, Tim Güneysu, Frank Gurkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens, Ruben Niederhagen, 
Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif Uhsadel, Anthony Van Herrewege, Bo-Yin Yang: Breaking ECC2K-130. Cryptology ePrint Archive, 
Report 2009/541, IACR, 2009



Fun exercise (back in 2010) use Pollard rho with negation map to solve 115-bit ECDLP

Idea use their compute power when they are charging (night time)

Effort: 
𝜋∙2115

4
≈ 1.8 ∙ 1017 iterations expected → 104 Ipad years

Pollard Rho on Mobile Devices

Ipad (2010) 
Apple A4 (= ARM Cortext A8, 
1.0 GHz, single-core)

530 ∙ 103

iterations per 
second

Apple iPad family (2015) 250 million sold

Apple iPhone family (2015) 700 million sold

Android active monthly users (2014) 1000 million



Fun exercise (back in 2010) use Pollard rho with negation map to solve 115-bit ECDLP

Idea use their compute power when they are charging (night time)

Effort: 
𝜋∙2115

4
≈ 1.8 ∙ 1017 iterations expected → 104 Ipad years →

?
103 modern Ipad years

Newer models have multiple cores, 64-bit architecture, higher clock-speeds + better implementation

Apple iPad family (2015) 250 million sold

Apple iPhone family (2015) 700 million sold

Android active monthly users (2014) 1000 million

Pollard Rho on Mobile Devices

Ipad (2010) 
Apple A4 (= ARM Cortext A8, 
1.0 GHz, single-core)

530 ∙ 103

iterations per 
second





Lattice-based cryptosystems -- Motivation

• Shortest Vector Problem (SVP) used as a theoretical foundation in many 
PQ-crypto schemes
• Lattice based encryption / signature schemes, fully homomorphic encryption
• Often compute in an ideal lattice for performance reasons

𝑅 = ℤ 𝑋 /(𝑋𝑛 + 1)

• Exact SVP is known to be NP-hard under randomized reductions
(In most applications approximations are enough)

• How efficient can we find short vectors in ideal lattices?



Asymptotic rigorous proven runtimes (ignoring poly-log factors in the exponent)

Time Memory

Voronoi 22𝑛 2𝑛

List Sieve 22.465𝑛 21.233𝑛

Enumeration 2𝑂(𝑛log(𝑛)) poly(𝑛)
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Time Memory

Voronoi 22𝑛 2𝑛

List Sieve 22.465𝑛 21.233𝑛

Enumeration 2𝑂(𝑛log(𝑛)) poly(𝑛)

Asymptotic heuristic runtimes

BKZ 2.0 𝑛 ∙ 𝑁 ∙ svp 𝑘 poly(𝑛)

+ Enumeration with 
extreme pruning

𝑛 ∙ 𝑁 ∙ 2𝑂(𝑘2) poly(𝑛)

Gauss Sieve “20.48𝑛” 20.2075𝑛

Decomposition 20.3374𝑛 20.2925𝑛

Voronoi “up to dimension 8”

SVP solvers

Only sieving algorithms take advantage of the ideal lattice structure



Sample a list of vectors and Gauss reduce all vectors with respect to each other



Each vector corresponds to two half spaces.
If a vector is in half-space of another previous vector, it can be reduced.



Each vector corresponds to two half spaces.
If a vector is in a half-space of another previous vector, it can be reduced.



When two vectors can reduce each other, the shorter one reduces the longer 
one.



When two vectors can reduce each other, the shorter one reduces the longer 
one. The half-spaces increasingly cover more space.



All vectors become pairwise Gauss reduced.



All vectors become pairwise Gauss reduced and the list consists of shorter and 
shorter vectors.



Repeat until we find a short vector or enough collisions.



Repeat until we find a short vector or enough collisions.
Nothing can be proven about the collisions.



L

v

S N

start with an initial list of vectors L (all pair-wise Gauss reduced)
sample a new vector V from N
do {
reduce v with respect to all vectors ℓ𝑖 in L
if v is reduced start from the beginning of the list L
reduce all ℓ𝑖 with respect to v
if ℓ𝑖 is reduced move it to the stack S
continue with new v from S and if empty sample a new one from N

} while (shortest vector has not been found)

Gauss Sieve

P. Voulgaris and D. Micciancio. Faster exponential time algorithms for the shortest vector problem. Electronic Colloquium on Computational Complexity, 2009



L

Q S N

V

B. Milde and M. Schneider. A parallel implementation of Gauss Sieve for the shortest vector problem in lattices. In Parallel Computing Technologies, 2011

Parallel Gauss Sieve

L

Q S N

V L

Q S N

V
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B. Milde and M. Schneider. A parallel implementation of Gauss Sieve for the shortest vector problem in lattices. In Parallel Computing Technologies, 2011

Pros Cons

Easy parallel algorithm

Total list size  𝑖 𝐿𝑖 is distributed 
among nodes

Parallel Gauss Sieve
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L

Q S N

V

B. Milde and M. Schneider. A parallel implementation of Gauss Sieve for the shortest vector problem in lattices. In Parallel Computing Technologies, 2011

Pros Cons

Easy parallel algorithm  𝑖 𝐿𝑖 are not necessarily pair-wise Gauss reduced

Total list size  𝑖 𝐿𝑖 is distributed 
among nodes

One node might sample a lot of new vectors: 
“traffic jams” + idle nodes

Suggested solution: skip jams 
→ more vectors in  𝑖 𝐿𝑖 are not pair-wise Gauss reduced
→ increased list size → increased running time

Parallel Gauss Sieve

L

Q S N

V L

Q S N

V



1) Reduce samples wrt list
2) Reduce samples wrt samples
3) Reduce list wrt samples
4) Use S as new vectors and  𝐿

as the new list

L
𝑠1
⋮

𝑠𝑡

Parallel Gauss Sieve – another approach

 𝑠1
⋮
 𝑠𝑡

 𝑠
ℓ1

⋮
ℓ𝑡

 𝑠

S  𝐿

T. Ishiguro, S. Kiyomoto, Y. Miyake, and T. Takagi. Parallel Gauss sieve algorithm: Solving the SVP challenge over a 128-dimensional ideal lattice. In PKC, 2014

Step 1 Step 2 Step 3
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Step 1 Step 2 Step 3
 After step 3 all vectors in  𝐿 are 

pairwise Gauss reduced
 Avoids the traffic jam problem

 Every node requires the complete 
list L and all samples S

 Conservative estimated max. list 
size for (non-ideal) dim. 128 is 
228 → 64 GB



1) Reduce samples wrt list
2) Reduce samples wrt samples
3) Reduce list wrt samples
4) Use S as new vectors and  𝐿

as the new list

L
𝑠1
⋮

𝑠𝑡

Parallel Gauss Sieve – another approach

 𝑠1
⋮
 𝑠𝑡

 𝑠
ℓ1

⋮
ℓ𝑡

 𝑠
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T. Ishiguro, S. Kiyomoto, Y. Miyake, and T. Takagi. Parallel Gauss sieve algorithm: Solving the SVP challenge over a 128-dimensional ideal lattice. In PKC, 2014

Step 1 Step 2 Step 3
 After step 3 all vectors in  𝐿 are 

pairwise Gauss reduced
 Avoids the traffic jam problem

 Every node requires the complete 
list L and all samples S

 Conservative estimated max. list 
size for (non-ideal) dim. 128 is 
228 → 64 GB

 Used to solve ideal lattice 
challenge of dim. 128 in 
≈ 15 days on 1344 CPUs 
≈ 55 CPU years



1) Collectively obtain new batch 𝑄𝑖

2) Reduce vectors from 𝑄𝑖 wrt 𝐿𝑖 and vice-versa
3) Reduce 𝑄𝑖 wrt to 𝑄𝑖 (divide work)

Parallel Gauss Sieve – combining both approaches

4) Reduced vectors from 𝐿𝑖 go to 𝑆𝑖

5) Reduced vectors from 𝑄𝑖 go to 𝑄′𝑖

J. W. Bos, M. Naehrig, J. van de Pol: Sieving for Shortest Vectors in Ideal Lattices: a Practical Perspective, Cryptology ePrint Archive, Report 2014/880, IACR, 2014.



• Locally 𝐿𝑖 is replaced by 𝐿𝑖\𝑆𝑖

• Compute 𝑗 s. t. |𝐿𝑗| is minimal and update

𝐿𝑗 as 𝐿𝑗 ∪  𝑖 𝑄𝑖

Parallel Gauss Sieve – combining both approaches

• This avoids traffic jams
• List size  𝑖 𝐿𝑖 is distributed among nodes
• All vectors are pairwise Gauss reduced

J. W. Bos, M. Naehrig, J. van de Pol: Sieving for Shortest Vectors in Ideal Lattices: a Practical Perspective, Cryptology ePrint Archive, Report 2014/880, IACR, 2014.



• The same vector 𝑣 ∈ 𝑄 might be reduced by different 𝐿𝑖 at different nodes → collisions
• Propagate the vector with minimal norm

Parallel Gauss Sieve – combining both approaches

J. W. Bos, M. Naehrig, J. van de Pol: Sieving for Shortest Vectors in Ideal Lattices: a Practical Perspective, Cryptology ePrint Archive, Report 2014/880, IACR, 2014.



 Ideal lattice: additional structure → also ideals in a ring R

Most crypto settings restrict to 

𝑅 = ℤ 𝑋 /(Φ𝑚(𝑋)),

where 𝑚 = 2𝑛, 𝑛 = 2ℓ, ℓ > 0 s.t. Φ𝑚 𝑋 = 𝑋𝑛 + 1

• If 𝑎(𝑋) belongs to an ideal then 𝑋𝑖𝑎 for 𝑖 ∈ ℤ also belongs to the ideal

• Negative exponents: 𝑋−1 = −𝑋𝑛−1

Notation: An element 𝑎 ∈ 𝑅 is of the form 

𝑎 𝑋 =  

𝑖=0

𝑛−1

𝑎𝑖𝑋
𝑖

and given by the coefficient vector 
𝒂 = (𝑎0, 𝑎1, … , 𝑎𝑛−1)

Ideal lattice



Lemma 1. 
Let 𝑎, 𝑏 ∈ 𝑅 = 𝑅 = ℤ 𝑋 /(𝑋𝑛 + 1) for 𝑛 a power of 2 and 𝑖, 𝑗 ∈ ℤ. Then we have:

𝑋𝑖 ∙ 𝑋𝑗 ∙ 𝒂 = 𝑋𝑖+𝑗 ∙ 𝒂 , 𝑋𝑖∙ 𝒂 ∙ 𝒃 = 𝑋𝑖 ∙ 𝒂 + 𝑋𝑖 ∙ 𝐛 , 𝑋𝑛 ∙ 𝒂 = −𝒂,

𝑋𝑖 ∙ 𝒂, 𝑋𝑖 ∙ 𝒃 = 𝒂, 𝒃 , 𝑋𝑖 ∙ 𝒂, 𝑋𝑗 ∙ 𝒃 = 𝒂,−𝑋𝑛−𝑖+𝑗 ∙ 𝒃 .

Lemma 2. 
Let 𝑎, 𝑏 ∈ 𝑅 = ℤ 𝑋 /(𝑋𝑛 + 1) for 𝑛 a power of 2 and 𝑖, 𝑗 ∈ ℤ. 

If 2 𝒂, 𝑋ℓ ∙ 𝒃 ≤ min 𝒂, 𝒂 , 𝒃, 𝒃 for all 0 ≤ ℓ < 𝑛, then 𝑋𝑖 ∙ 𝒂 and 𝑋𝑗 ∙ 𝒃 are Gauss 
reduced for all 𝑖, 𝑗 ∈ ℤ.

Ideal lattice
Previous work: store one vector, represent 𝑛 vectors.

Observation 1: Checking if all 𝑛2 pairs of rotations of a vector 𝒂 with a vector 𝒃 are Gauss 
reduced can be done with only 𝑛 comparisons and 𝑛 scalar products.



Define the reflex polynomial 𝑏 𝑅 𝑋 as

𝑏 𝑅 𝑋 = 𝑋𝑛−1 ∙ 𝑏 𝑋−1 such that 𝒃 𝑅 = 𝑏𝑛−1, 𝑏𝑛−2, … , 𝑏0

Observation 1. Checking if all 𝑛2 pairs of rotations of a vector 𝒂 with a vector 𝒃 are Gauss 
reduced can be done with only 𝑛 comparisons and 𝑛 scalar products.

Observation 2. The 𝑛 scalar products can be computed using a single ring product.

Ideal lattice

Lemma 3. Let

𝑐 𝑋 = 𝑎 𝑋 ∙ −𝑋 ∙ 𝑏 𝑅 𝑋 mod (𝑋𝑛 + 1)

And let 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) ∈ ℤ𝑛 be its coefficient vector. Then 

𝑐𝑖 = 𝑎, 𝑋𝑖 ∙ 𝑏 for 0 ≤ 𝑖 < 𝑛.



Observation 1. Checking if all 𝑛2 pairs of rotations of a vector 𝒂 with a vector 𝒃 are Gauss 
reduced can be done with only 𝑛 comparisons and 𝑛 scalar products.

Observation 2. The 𝑛 scalar products can be computed using a single ring product.

Observation 3. Since the ring product is a negacyclic convolution we can use a (symbolic) FFT 

Ideal lattice

Nussbaumer’s symbolic FFT
Decompose ℤ 𝑋 /(𝑋𝑛 + 1) into two extensions. Let 𝑛 = 2𝑘 = 𝑠 ∙ 𝑟 such that 𝑠|𝑟. Then

ℤ 𝑋 /(𝑋𝑛 + 1) ≅ 𝑆 = 𝑇[𝑋]/(𝑋𝑠 − 𝑍), where 𝑇 = ℤ 𝑍 /(𝑍𝑟 + 1)

Note: 𝑍𝑟/𝑠 is an 𝑠th root of −1 in 𝑇 and 𝑋𝑠 = 𝑍 in 𝑆

Allows to compute the DFT symbolically in 𝑇

Use  𝒪(𝑛 ln 𝑛) instead of 𝒪(𝑛2) arithmetic operations

H. J. Nussbaumer. Fast polynomial transform algorithms for digital convolution. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1980



Performance

Experiments run on the BlueCrystal Phase 2 cluster of the Advanced Computing Research Centre at the University of Bristol

Speedup

8 CPU versus 32 CPU 3.6

8 CPU versus 256 CPU 22.1
Lattices obtained from the SVP challenge, preprocess with BKZ with blocksize 30.



Performance

 Ishiguro et al. found a short 

vector in a dim. 128 ideal lattice 

in 14.88 days on 1334 CPUs

≈ 55 CPU years

 Our algorithm using FFT on the 

same lattice challenge on the 

same hardware (Bristol cluster) 

on 8.69 days on 1024 CPUs

≈ 25 CPU years

 More than twice as efficient

 Running challenge again with 

better load balancing, expect 

better results soon

o Source code available (public domain): http://www.joppebos.com/src/ParallelGaussSieve-1.0.tgz

http://www.joppebos.com/src/ParallelGaussSieve-1.0.tgz


Conclusions

 Number field sieve (Integer factorization)

 Cofactorization step in parallel

 When using the NVIDIA GeForce GTX 580 1.5x improved yield over quad-core Intel i7-3770K CPU

 Matrix step is still difficult run in parallel

 Pollard rho (Elliptic curve discrete logarithm)

 Highly-parallel and needs no memory → can utilize the power of low-cost and widely available devices

 Example: mobile phones

 Gauss sieve (shortest vector)

 Entire algorithm can be run in parallel, how does it scale exactly to thousands of nodes?

 High communication cost, all nodes need to be online (?)

Entire algorithm 
in parallel?

Can run on low-
end devices?

Low 
communication?

Number field 
sieve   

Pollard rho   

Gauss sieve   




