Parallel (Public-Key) Cryptanalysis

Joppe W. Bos

Summer school on real-world crypto and privacy

What is Parallel cryptanalysis?

From the concise Oxford Dictionary (ninth edition)

Parallel

"Computing involving the simultaneous performance of operations"

Cryptanalysis

"the art or process of solving cryptograms by analysis; code-breaking"

The working rebuilt bombe at Bletchley Park museum. Picture by Antoine Taveneaux

What is Parallel cryptanalysis?

From the concise Oxford Dictionary (ninth edition)

Parallel

"Computing involving the simultaneous performance of operations"

Cryptanalysis

"the art or process of solving cryptograms by analysis; code-breaking"

Parallel cryptanalysis can be applied in many different settings
\checkmark Brute force
\checkmark Public-key / symmetric cryptography
\checkmark Computation of higher-order correlation power analysis attacks

The working rebuilt bombe at Bletchley Park museum.

What is Parallel cryptanalysis?

From the concise Oxford Dictionary (ninth edition)

Parallel

"Computing involving the simultaneous performance of operations"

Cryptanalysis

"the art or process of solving cryptograms by analysis; code-breaking"

Parallel cryptanalysis can be applied in many different settings
\checkmark Brute force
\checkmark Public-key / symmetric cryptography
\checkmark Computation of higher-order correlation power analysis attacks

> Use parallel cryptanalysis to solve mathematical problems which form the theoretical foundation of many public-key cryptographic schemes.

Goals

1. Show the best methods to cryptanalyze public-key cryptography
a) Explain some of the details
b) Effort estimates (security assessment)
2. From a computational and parallel point of view
3. Public-key cryptography is fun!

Tiny keys
Fast crypto
No security

Huge keys
Slow crypto
Too much
(?) security

Approach: Use the best parallelizable algorithms


```
Approach: Use the best parallelizable algorithms
Does it make sense to say the best attack?
```

Fastest
Minimize power consumption
Minimize investment
Et cetera
(time)
(green)
(re-use existing hardware)
(invent your own characterization for best)


```
Approach: Use the best parallelizable algorithms
Does it make sense to say the best attack?
```

Fastest
Minimize power consumption
Minimize investment
Et cetera
(time)
(green)
(re-use existing hardware)
(invent your own characterization for best)

Integer Factorization

Many generic integer factoring algorithms follow the same old approach.
Idea: an odd integer n can be written as the difference of two squares
For instance, idea behind

- Fermat factorization method
- Quadratic sieve (and variants)
- Number field sieve

Given a composite odd $n \in \mathbb{Z}$, find non-trivial factors p and q such that $p \cdot q=n \quad(q>p)$.

Integer Factorization

Many generic integer factoring algorithms follow the same old approach.
Idea: an odd integer n can be written as the difference of two squares
For instance, idea behind

- Fermat factorization method
- Quadratic sieve (and variants)
- Number field sieve

Given a composite odd $n \in \mathbb{Z}$, find non-trivial factors p and q such that $p \cdot q=n \quad(q>p)$.

$$
\begin{array}{rcc}
p \cdot q & =\left(\frac{p+q}{2}-\frac{q-p}{2}\right) \cdot\left(\frac{p+q}{2}+\frac{q-p}{2}\right) &
\end{array} \begin{aligned}
& \text { Since } p \text { and } q \text { are odd the } \\
& \text { average } \frac{p+q}{2} \text { is an integer and } \\
& \\
&
\end{aligned}=\begin{array}{lc}
\frac{q-p}{2} \text { is the distance from this }
\end{array}
$$

Integer Factorization: Fermat factorization method

Good at finding large divisors

Given n, try to find x and y such that $x^{2}-n=y^{2}$, start with $\lceil\sqrt{n}\rceil$

Example.

$2279=43 \times 53$
$\lceil\sqrt{2279}\rceil=48$
$48^{2}-2279=25=5^{2}$
$(48+5)(48-5)=43 \times 53=2279$

Integer Factorization: Fermat factorization method

Good at finding large divisors
Given n, try to find x and y such that $x^{2}-n=y^{2}$, start with $\lceil\sqrt{n}\rceil$

$$
\begin{gathered}
\text { Example. } \\
2279=43 \times 53 \\
\lceil\sqrt{2279} \mid=48 \\
48^{2}-2279=25=5^{2} \\
(48+5)(48-5)=43 \times 53=2279
\end{gathered}
$$

Generalization

Find x and y such that

$$
x^{2} \equiv y^{2}(\bmod n) \text { and } x \not \equiv y(\bmod n)
$$

then with high probability

$$
\operatorname{gcd}(x-y, n) \neq 1 \text { or } n
$$

Integer Factorization

1. Polynomial selection

Degree $d>1$, integer $m \approx n^{1 / d}$, radix- m representation of $n=f_{d} m^{d}+\cdots+f_{1} m+f_{0}$
Leads to $f_{a}(X)=\sum_{i=1}^{d} f_{i} X^{i} \in \mathbb{Z}[X]$ with $f_{a}(m) \equiv 0(\bmod n)$ (one can do better!) and $f_{r}(X)=X-m$

2. Relation collection

Find co-prime $a, b \in \mathbb{Z} \times \mathbb{Z}_{\geq 0}$ such that $b f_{r}(a / b)$ and $b^{d} f_{a}(a / b)$ factors into small primes ("smooth")

3. Matrix step

Find even sum of small prime exponent vectors, solve linear dependencies between the relations (find random elements of the null-space of the matrix)

4. Square root

Compute the square root of a large element of the number field

Integer Factorization

1. Polynomial selection

Degree $d>1$, integer $m \approx n^{1 / d}$, radix- m representation of $n=f_{d} m^{d}+\cdots+f_{1} m+f_{0}$
Leads to $f_{a}(X)=\sum_{i=1}^{d} f_{i} X^{i} \in \mathbb{Z}[X]$ with $f_{a}(m) \equiv 0(\bmod n)$ (one can do better!) and $f_{r}(X)=X-m$ 40 CPU years

2. Relation collection

Find co-prime $a, b \in \mathbb{Z} \times \mathbb{Z}_{\geq 0}$ such that $b f_{r}(a / b)$ and $b^{d} f_{a}(a / b)$ factors into small primes ("smooth") 1500 CPU years, easy to run in parallel

3. Matrix step

Find even sum of small prime exponent vectors, solve linear dependencies between the relations (find random elements of the null-space of the matrix) 152 CPU years, not easy to run in parallel

4. Square root

Compute the square root of a large element of the number field <1 CPU day

Integer Factorization

1. Polynomial selection

Degree $d>1$, integer $m \approx n^{1 / d}$, radix- m representation of $n=f_{d} m^{d}+\cdots+f_{1} m+f_{0}$
Leads to $f_{a}(X)=\sum_{i=1}^{d} f_{i} X^{i} \in \mathbb{Z}[X]$ with $f_{a}(m) \equiv 0(\bmod n)$ (one can do better!) and $f_{r}(X)=X-m$ 40 CPU years

2. Relation collection

Find co-prime $a, b \in \mathbb{Z} \times \mathbb{Z}_{\geq 0}$ such that $b f_{r}(a / b)$ and $b^{d} f_{a}(a / b)$ factors into small primes ("smooth") 1500 CPU years, easy to run in parallel, memory requirement: $\mathbf{1} \sim \mathbf{8 G B}$
(Disclaimer: oversieving)

3. Matrix step

Find even sum of small prime exponent vectors, solve linear dependencies between the relations (find random elements of the null-space of the matrix)
152 CPU years, not easy to run in parallel, memory requirement: $\mathbf{1 8 0}$ GB / $\approx \mathbf{9 0 0}$ GB / $\mathbf{1 8 0}$ GB

4. Square root

Compute the square root of a large element of the number field <1 CPU day

Integer Factorization

1. Polynomial selection

Degree $d>1$, integer $m \approx n^{1 / d}$, radix- m representation of $n=f_{d} m^{d}+\cdots+f_{1} m+f_{0}$
Leads to $f_{a}(X)=\sum_{i=1}^{d} f_{i} X^{i} \in \mathbb{Z}[X]$ with $f_{a}(m) \equiv 0(\bmod n)$ (one can do better!) and $f_{r}(X)=X-m$
40 CPU years
2. Relation cóllection

Find co-prime $a, b \in \mathbb{Z} \times \mathbb{Z}_{\geq 0}$ such that $b f_{r}(a / b)$ and $b^{d} f_{a}(a / b)$ factors into small primes ("smooth") 1500 CPU years, easy to run in parallel, memory requirement: $\mathbf{1} \sim \mathbf{8 G B}$
(Disclaimer: oversieving)
3. Matrix step

Find even sum of small prime exponent vectors, solve linear dependencies between the relations (find random elements of the null-space of the matrix)
152 CPU years, not easy to run in parallel, memory requirement: $\mathbf{1 8 0}$ GB / $\approx \mathbf{9 0 0}$ GB / $\mathbf{1 8 0}$ GB
4. Square root

Compute the square root of a large element of the number field <1 CPU day

Relation Collection

Sieving identifies many pairs $\left(a_{i}, b_{i}\right)$ such that $b f_{r}(a / b)$ and $b^{d} f_{a}(a / b)$ have many small factors (memory intensive)

Cofactorization (to check: is $b f_{r}(a / b) \boldsymbol{B}_{\boldsymbol{r}}$-smooth and $b^{d} f_{a}(a / b) \boldsymbol{B}_{\boldsymbol{a}}$-smooth)

1. Polynomial evaluation
2. Compositeness test (Miller-Rabin)
3. Trial division
4. Pollard $p-1$ (stage $1 \& 2$)
5. Elliptic curve factorization method (stage $1 \& 2$) using twisted Edwards curves

Relation Collection

Sieving identifies many pairs $\left(a_{i}, b_{i}\right)$ such that $b f_{r}(a / b)$ and $b^{d} f_{a}(a / b)$ have many small factors (memory intensive)

Cofactorization (to check: is $b f_{r}(a / b) \boldsymbol{B}_{\boldsymbol{r}}$-smooth and $b^{d} f_{a}(a / b) \boldsymbol{B}_{\boldsymbol{a}}$-smooth)

1. Polynomial evaluation
2. Compositeness test (Miller-Rabin)
3. Trial division
4. Pollard $p-1$ (stage $1 \& 2$)
5. Elliptic curve factorization method (stage $1 \& 2$) using twisted Edwards curves
[^0]
Relation Collection

Sieving identifies many pairs $\left(a_{i}, b_{i}\right)$ such that $b f_{r}(a / b)$ and $b^{d} f_{a}(a / b)$ have many small factors (memory intensive)

Cofactorization (to check: is $b f_{r}(a / b) \boldsymbol{B}_{\boldsymbol{r}}$-smooth and $b^{d} f_{a}(a / b) \boldsymbol{B}_{\boldsymbol{a}}$-smooth)

1. Polynomial evaluation
2. Compositeness test (Miller-Rabin)

3. Trial division

4. Pollard $p-1$ (stage $1 \& 2$)
5. Elliptic curve factorization method (stage $1 \& 2$) using twisted Edwards curves

	Modular arithmetic		
	(Montgomery multiplication)		
	Exact division	\quad	Cofactorization can check many pairs
:---			
$\left(a_{i}, b_{i}\right)$ simultaneously. Can we offload this			
to another device?			
Possible answer: Graphics processing unit			

Graphics processing unit (Nvidia platform)

- Modern GPUs are massively parallel 32-bit many-core architectures
- One integer or floating point instruction/clock cycle per thread/core
- Usually run thousands of threads

Graphics processing unit (Nvidia platform)

- Modern GPUs are massively parallel 32-bit many-core architectures
- One integer or floating point instruction/clock cycle per thread/core
- Usually run thousands of threads

NVIDIA FERMI
(GTX 500 family)
Cores
Up to 512
NVIDIA KEPLER
(GTX 700 family)

SMs
Freq
Up to 16
Up to 2880
Up to 48
Up to 980 MHz
DRAM
Up to 1544 MHz
Up to 6 GB (336 GB/s)

Relation Collection on GPUs

- GPUs have been considered as cryptanalytic coprocessors before (e.g., for ECM)
- First time for the entire relation collection phase

Transfer batch of $\left(a_{i}, b_{i}\right)$ from CPU to GPU
Repeat in parallel until all (a_{i}, b_{i}) have been processed $\{$
Thread receives $\left(a_{i}, b_{i}\right)$
Polynomial evaluation + Trial Division
Perform compositeness test and put results in correct bucket
Pick composite from bucket and perform dedicated Pollard $p-1$
Perform compositeness test and put results in correct bucket for ($i=0 ; i<n ; i++$) \{
Pick composite from bucket and perform dedicated ECM Perform compositeness test and put results in correct bucket \}
\}
Transfer good pair to CPU, throw away the rest

Relation Collection on GPUs

- GPUs have been considered as cryptanalytic coprocessors before (e.g., for ECM)
- First time for the entire relation collection phase

Transfer batch of $\left(a_{i}, b_{i}\right)$ from CPU to GPU
Repeat in parallel until all (a_{i}, b_{i}) have been processed $\{$
Thread receives $\left(a_{i}, b_{i}\right)$
Polynomial evaluation + Trial Division

All the Pollard $p-1$ and ECM
algorithms run concurrently
\rightarrow must use the same parameters
\rightarrow how to optimize?

Perform compositeness test and put results in correct bucket
Pick composite from bucket and perform dedicated Pollard $p-1$
Perform compositeness test and put results in correct bucket for ($i=0 ; i<n ; i++$) \{
Pick composite from bucket and perform dedicated ECM Perform compositeness test and put results in correct bucket \}
\}
Transfer good pair to CPU, throw away the rest

Parameter determination

Observation: Varying the bounds of the Pollard $p-1$ factoring (within reasonable ranges)
does not noticeably affect the yield
Explanation: All missed prime factors are found by the subsequent ECM attempts.

Parameter determination

Observation: Varying the bounds of the Pollard $p-1$ factoring (within reasonable ranges) does not noticeably affect the yield
Explanation: All missed prime factors are found by the subsequent ECM attempts.
However, early removal of small primes reduce the size of the composite
\rightarrow reducing the ECM run time
\rightarrow reduces the overall run time
(if not too much time is spent on Pollard $p-1$)

Parameter determination

Observation: Varying the bounds of the Pollard $p-1$ factoring (within reasonable ranges) does not noticeably affect the yield
Explanation: All missed prime factors are found by the subsequent ECM attempts.
However, early removal of small primes reduce the size of the composite
\rightarrow reducing the ECM run time
\rightarrow reduces the overall run time
(if not too much time is spent on Pollard $p-1$)

The time difference for the entire cofactorization when the yield is fixed at 95% when varying the B_{1} and B_{2} bounds for Pollard $p-1$ on the rational side

Results

CPU used: Intel i7-3770K CPU, with 4 cores, $\quad 3.5 \mathrm{GHz}$ with 16 GB of memory GPU used: NVIDIA GeForce GTX $\mathbf{5 8 0}$, with 512 CUDA cores, 1.5 GHz with 1.5 GB of global memory

Target number: RSA-768 (same polynomial as used for the factorization)
Processing multiple special primes with desired yield 99\%.

Large primes	Number of pairs after sieving	Setting	Total seconds	Relations found	Relations per second
4	$\approx 5 \cdot 10^{7}$	CPU only	1602	6855	4.28
		GPU + CPU			

Results

CPU used: Intel i7-3770K CPU, with 4 cores, $\quad 3.5 \mathrm{GHz}$ with 16 GB of memory GPU used: NVIDIA GeForce GTX $\mathbf{5 8 0}$, with 512 CUDA cores, 1.5 GHz with 1.5 GB of global memory

Target number: RSA-768 (same polynomial as used for the factorization)
Processing multiple special primes with desired yield 99\%.

Large primes	Number of pairs after sieving	Setting	Total seconds	Relations found	Relations per second
4	$\approx 5 \cdot 10^{7}$	CPU only	1602	6855	4.28
		GPU + CPU	1300	8302	6.39

Results

CPU used: Intel i7-3770K CPU, with 4 cores, $\quad 3.5 \mathrm{GHz}$ with 16 GB of memory GPU used: NVIDIA GeForce GTX 580, with 512 CUDA cores, 1.5 GHz with 1.5 GB of global memory

Target number: RSA-768 (same polynomial as used for the factorization)
Processing multiple special primes with desired yield 99\%.

Large primes	Number of pairs after sieving	Setting	Total seconds	Relations found	Relations per second
4	$\approx 5 \cdot 10^{7}$	CPU only	1602	6855	4.28
	GPU + CPU	1300	8302	6.39	

\checkmark Latency down by a factor 1.23
\checkmark Number of relations found up by 21.1%
\checkmark Yield / second up by a factor $1.49 x$

Not considered
> Purchase cost GPU versus CPU
> Power comparison GPU versus CPU

Parallelization of Pollard Rho

Can we compute Pollard rho using multiple computational resources?
What happens if we run Pollard rho m times in parallel?
$\rightarrow \sqrt{m}$ speedup

Can we do better?

Let the m parallel instance "work together"
\rightarrow share some points (distinguished points)
(Collected in a central database, collision search is performed here)
\rightarrow factor m speedup

Using Pollard Rho to solve ECDLPs

Advantages of Pollard rho
\checkmark Very low memory requirement (can run virtually on any device!)
\checkmark Can store a batch of distinguished points locally and sent them to the central database in batches.

What devices can we use to solve ECDLPs?

Using Pollard Rho to solve ECDLPs

Advantages of Pollard rho
\checkmark Very low memory requirement (can run virtually on any device!)
\checkmark Can store a batch of distinguished points locally and sent them to the central database in batches.

What devices can we use to solve ECDLPs?

- Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, Peter L. Montgomery: Solving a 112-bit Prime Elliptic Curve Discrete Logarithm Problem on Game Consoles using Sloppy Reduction. International Journal of Applied Cryptography, 2012

Using Pollard Rho to solve ECDLPs

Advantages of Pollard rho
 \checkmark Very low memory requirement (can run virtually on any device!)
 \checkmark Can store a batch of distinguished points locally and sent them to the central database in batches.

What devices can we use to solve ECDLPs?

- Joppe W. Bos, Marcelo E. Kaihara, Thorsten Kleinjung, Arjen K. Lenstra, Peter L. Montgomery: Solving a 112-bit Prime Elliptic Curve Discrete Logarithm Problem on Game Consoles using Sloppy Reduction. International Journal of Applied Cryptography, 2012
- Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W. Bos, Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier van Damme, Giacomo de Meulenaer, Luis Julian Dominguez Perez, Junfeng Fan, Tim Güneysu, Frank Gurkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens, Ruben Niederhagen, Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif Uhsadel, Anthony Van Herrewege, Bo-Yin Yang: Breaking ECC2K-130. Cryptology ePrint Archive, Report 2009/541, IACR, 2009

Pollard Rho on Mobile Devices

Fun exercise (back in 2010) use Pollard rho with negation map to solve 115-bit ECDLP

Apple iPad family (2015)	250 million sold	Ipad (2010)	$530 \cdot 10^{3}$
Apple iPhone family (2015)	700 million sold	Apple A4 (= ARM Cortext A8,	iterations per
Android active monthly users (2014)	1000 million	1.0 GHz , single-core)	second

Idea use their compute power when they are charging (night time)
Effort: $\sqrt{\frac{\pi \cdot 2^{115}}{4}} \approx 1.8 \cdot 10^{17}$ iterations expected $\rightarrow 10^{4}$ Ipad years

Pollard Rho on Mobile Devices

Fun exercise (back in 2010) use Pollard rho with negation map to solve 115-bit ECDLP

Apple iPad family (2015)	250 million sold
Apple iPhone family (2015)	700 million sold
Android active monthly users (2014)	1000 million

```
Ipad (2010)
Apple A4 (= ARM Cortext A8,
1.0 GHz, single-core)
```

$530 \cdot 10^{3}$
iterations per second

Idea use their compute power when they are charging (night time)
Effort: $\sqrt{\frac{\pi \cdot 2^{115}}{4}} \approx 1.8 \cdot 10^{17}$ iterations expected $\rightarrow 10^{4}$ Ipad years $\xrightarrow{?} 103$ modern Ipad years
Newer models have multiple cores, 64-bit architecture, higher clock-speeds + better implementation

Grid computing on the move.

Grid computing system designed for cryptographic computation only based on smartphones and tablets.

Lattice-based cryptosystems -- Motivation

- Shortest Vector Problem (SVP) used as a theoretical foundation in many PQ-crypto schemes
- Lattice based encryption / signature schemes, fully homomorphic encryption
- Often compute in an ideal lattice for performance reasons

$$
R=\mathbb{Z}[X] /\left(X^{n}+1\right)
$$

- Exact SVP is known to be NP-hard under randomized reductions (In most applications approximations are enough)
- How efficient can we find short vectors in ideal lattices?

SVP solvers

Asymptotic rigorous proven runtimes (ignoring poly-log factors in the exponent)

	Time	Memory
Voronoi	$2^{2 n}$	2^{n}
List Sieve	$2^{2.465 n}$	$2^{1.233 n}$
Enumeration	$2^{O(n \log (n))}$	$\operatorname{poly}(n)$

SVP solvers

Asymptotic rigorous proven runtimes (ignoring poly-log factors in the exponent)

	Time	Memory
Voronoi	$2^{2 n}$	2^{n}
List Sieve	$2^{2.465 n}$	$2^{1.233 n}$
Enumeration	$2^{O(n \log (n))}$	$\operatorname{poly}(n)$

Asymptotic heuristic runtimes		
BKZ 2.0	$n \cdot N \cdot \operatorname{svp}(k)$	$\operatorname{poly}(n)$
+ Enumeration with		
extreme pruning	$n \cdot N \cdot 2^{O\left(k^{2}\right)}$	$\operatorname{poly}(n)$
Gauss Sieve	$" 2^{0.48 n "}$	$2^{0.2075 n}$
Decomposition	$2^{0.3374 n}$	$2^{0.2925 n}$
Voronoi	"up to dimension 8"	

SVP solvers

Asymptotic rigorous proven runtimes (ignoring poly-log factors in the exponent)

	Time	Memory
Voronoi	$2^{2 n}$	2^{n}
List Sieve	$2^{2.465 n}$	$2^{1.233 n}$
Enumeration	$2^{O(n \log (n))}$	$\operatorname{poly}(n)$

Asymptotic heuristic runtimes		
BKZ 2.0	$n \cdot N \cdot \operatorname{svp}(k)$	$\operatorname{poly}(n)$
+ Enumeration with		
extreme pruning	$n \cdot N \cdot 2^{O\left(k^{2}\right)}$	$\operatorname{poly}(n)$
Gauss Sieve	$" 2^{0.48 n "}$	$2^{0.2075 n}$
Decomposition	$2^{0.3374 n}$	$2^{0.2925 n}$
Voronoi	"up to dimension $8 "$	

Only sieving algorithms take advantage of the ideal lattice structure

Sample a list of vectors and Gauss reduce all vectors with respect to each other

Each vector corresponds to two half spaces.
If a vector is in half-space of another previous vector, it can be reduced.

Each vector corresponds to two half spaces.
If a vector is in a half-space of another previous vector, it can be reduced.

When two vectors can reduce each other, the shorter one reduces the longer one.

When two vectors can reduce each other, the shorter one reduces the longer one. The half-spaces increasingly cover more space.

All vectors become pairwise Gauss reduced.

All vectors become pairwise Gauss reduced and the list consists of shorter and shorter vectors.

Repeat until we find a short vector or enough collisions.

Repeat until we find a short vector or enough collisions. Nothing can be proven about the collisions.

Gauss Sieve

start with an initial list of vectors L (all pair-wise Gauss reduced) sample a new vector V from N do \{
reduce v with respect to all vectors ℓ_{i} in L if v is reduced start from the beginning of the list L reduce all ℓ_{i} with respect to v if ℓ_{i} is reduced move it to the stack S continue with new v from S and if empty sample a new one from N $\}$ while (shortest vector has not been found)

Parallel Gauss Sieve

Parallel Gauss Sieve

Parallel Gauss Sieve

Parallel Gauss Sieve - another approach

Parallel Gauss Sieve - another approach

[^1]
Parallel Gauss Sieve - another approach

Parallel Gauss Sieve - combining both approaches

1) Collectively obtain new batch Q_{i}
2) Reduced vectors from L_{i} go to S_{i}
3) Reduce vectors from Q_{i} wrt L_{i} and vice-versa
4) Reduced vectors from Q_{i} go to $Q^{\prime}{ }_{i}$
5) Reduce Q_{i} wrt to Q_{i} (divide work)

Parallel Gauss Sieve - combining both approaches

- Locally L_{i} is replaced by $L_{i} \backslash S_{i}$
- Compute j s.t. $\left|L_{j}\right|$ is minimal and update L_{j} as $L_{j} \cup \bigcap_{i} Q_{i}$
- This avoids traffic jams
- List size $\left(\mathrm{U}_{i} L_{i}\right)$ is distributed among nodes
- All vectors are pairwise Gauss reduced

Parallel Gauss Sieve - combining both approaches

- The same vector $v \in Q$ might be reduced by different L_{i} at different nodes \rightarrow collisions
- Propagate the vector with minimal norm

Ideal lattice

\checkmark Ideal lattice: additional structure \rightarrow also ideals in a ring R
\checkmark Most crypto settings restrict to

$$
\begin{gathered}
R=\mathbb{Z}[X] /\left(\Phi_{m}(X)\right) \\
\text { where } m=2 n, n=2^{\ell}, \ell>0 \text { s.t. } \Phi_{m}(X)=X^{n}+1
\end{gathered}
$$

- If $a(X)$ belongs to an ideal then $X^{i} a$ for $i \in \mathbb{Z}$ also belongs to the ideal
- Negative exponents: $X^{-1}=-X^{n-1}$

Notation: An element $a \in R$ is of the form

$$
a(X)=\sum_{i=0}^{n-1} a_{i} X^{i}
$$

and given by the coefficient vector

$$
\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)
$$

Ideal lattice

Previous work: store one vector, represent n vectors.
Observation 1: Checking if all n^{2} pairs of rotations of a vector \boldsymbol{a} with a vector \boldsymbol{b} are Gauss reduced can be done with only n comparisons and n scalar products.

Lemma 1.

Let $a, b \in R=R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of 2 and $i, j \in \mathbb{Z}$. Then we have:

$$
\begin{array}{lll}
X^{i} \cdot\left(X^{j} \cdot \boldsymbol{a}\right)=X^{i+j} \cdot \boldsymbol{a}, & X^{i} \cdot(\boldsymbol{a} \cdot \boldsymbol{b})=X^{i} \cdot \boldsymbol{a}+X^{i} \cdot \mathbf{b}, & X^{n} \cdot \boldsymbol{a}=-\boldsymbol{a}, \\
\left\langle X^{i} \cdot \boldsymbol{a}, X^{i} \cdot \boldsymbol{b}\right\rangle=\langle\boldsymbol{a}, \boldsymbol{b}\rangle, & \left\langle X^{i} \cdot \boldsymbol{a}, X^{j} \cdot \boldsymbol{b}\right\rangle=\left\langle\boldsymbol{a},-X^{n-i+j} \cdot \boldsymbol{b}\right\rangle . &
\end{array}
$$

Lemma 2.

Let $a, b \in R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for n a power of 2 and $i, j \in \mathbb{Z}$.
If $2\left|\left\langle\boldsymbol{a}, X^{\ell} \cdot \boldsymbol{b}\right\rangle\right| \leq \min \{\langle\boldsymbol{a}, \boldsymbol{a}\rangle,\langle\boldsymbol{b}, \boldsymbol{b}\rangle\}$ for all $0 \leq \ell<n$, then $X^{i} \cdot \boldsymbol{a}$ and $X^{j} \cdot \boldsymbol{b}$ are Gauss reduced for all $i, j \in \mathbb{Z}$.

Ideal lattice

Observation 1. Checking if all n^{2} pairs of rotations of a vector \boldsymbol{a} with a vector \boldsymbol{b} are Gauss reduced can be done with only n comparisons and n scalar products.

Observation 2. The n scalar products can be computed using a single ring product.

Define the reflex polynomial $b^{(R)}(X)$ as

$$
b^{(R)}(X)=X^{n-1} \cdot b\left(X^{-1}\right) \text { such that } \boldsymbol{b}^{(R)}=\left(b_{n-1}, b_{n-2}, \ldots, b_{0}\right)
$$

Lemma 3. Let

$$
c(X)=a(X) \cdot\left(-X \cdot b^{(R)}(X)\right) \bmod \left(X^{n}+1\right)
$$

And let $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in \mathbb{Z}^{n}$ be its coefficient vector. Then

$$
c_{i}=\left\langle a, X^{i} \cdot b\right\rangle \text { for } 0 \leq i<n
$$

Ideal lattice

Observation 1. Checking if all n^{2} pairs of rotations of a vector \boldsymbol{a} with a vector \boldsymbol{b} are Gauss reduced can be done with only n comparisons and n scalar products.

Observation 2. The n scalar products can be computed using a single ring product.
Observation 3. Since the ring product is a negacyclic convolution we can use a (symbolic) FFT

Nussbaumer's symbolic FFT

Decompose $\mathbb{Z}[X] /\left(X^{n}+1\right)$ into two extensions. Let $n=2^{k}=s \cdot r$ such that $s \mid r$. Then

$$
\mathbb{Z}[X] /\left(X^{n}+1\right) \cong S=T[X] /\left(X^{s}-Z\right), \text { where } T=\mathbb{Z}[Z] /\left(Z^{r}+1\right)
$$

Note: $Z^{r / s}$ is an $s^{\text {th }}$ root of -1 in T and $X^{s}=Z$ in S
Allows to compute the DFT symbolically in T

$$
\text { Use } \mathcal{O}(n \ln n) \text { instead of } \mathcal{O}\left(n^{2}\right) \text { arithmetic operations }
$$

Performance

Dimension 96

Experiments run on the BlueCrystal Phase 2 cluster of the Advanced Computing Research Centre at the University of Bristol

Performance

- Ishiguro et al. found a short vector in a dim. 128 ideal lattice in 14.88 days on 1334 CPUs $\approx 55 \mathrm{CPU}$ years
- Our algorithm using FFT on the same lattice challenge on the same hardware (Bristol cluster) on 8.69 days on 1024 CPUs $\approx 25 \mathrm{CPU}$ years
- More than twice as efficient
- Running challenge again with better load balancing, expect better results soon

Conclusions

Number field sieve (Integer factorization)

- Cofactorization step in parallel
- When using the NVIDIA GeForce GTX 580 1.5x improved yield over quad-core Intel i7-3770K CPU
- Matrix step is still difficult run in parallel
- Pollard rho (Elliptic curve discrete logarithm)
- Highly-parallel and needs no memory \rightarrow can utilize the power of low-cost and widely available devices
- Example: mobile phones

Gauss sieve (shortest vector)

- Entire algorithm can be run in parallel, how does it scale exactly to thousands of nodes?
- High communication cost, all nodes need to be online (?)

	Entire algorithm in parallel?	Can run on lowend devices?	Low communication?
Number field sieve	x	x	$\checkmark x$
Pollard rho	\checkmark	\checkmark	\checkmark
Gauss sieve	\checkmark	x	x

[^0]: Modular arithmetic
 (Montgomery multiplication)
 Exact division

[^1]: T. Ishiguro, S. Kiyomoto, Y. Miyake, and T. Takagi. Parallel Gauss sieve algorithm: Solving the SVP challenge over a 128-dimensional ideal lattice. In PKC, 2014

